ddos攻击技术教程_ddos攻击案例2017

hacker|
235

Memcache UDP 反射放大攻击技术分析

本篇技术blog,由360信息安全部0kee Team、360 *** 安全研究院、360-CERT共同发布。

Memcache UDP 反射放大攻击(以下简称 Memcache DRDoS)在最近的一周里吸引了安全社区的较多注意。以下介绍我们对该类型攻击观察到的情况。

在PoC 2017 会议上的原始报告

Memcache DRDoS,由360信息安全部0kee Team在2017-06 附近首先发现,并于 2017-11 在 PoC 2017 会议上做了公开报告。会议报告在 这里 ,其中详细介绍了攻击的原理和潜在危害。

在这份文档中,作者指出这种攻击的特点:

memcache 放大倍数超高,至少可以超过50k;

memcache 服务器(案例中的反射点)数量较多,2017-11时估算全球约有 60k 服务器可以被利用,并且这些服务器往往拥有较高的带宽资源。

基于以上特点,作者认为该攻击方式可以被利用来发起大规模的DDoS攻击,某些小型攻击团队也可能因此获得原先没有的大流量攻击能力。

在 DDo *** on 上观察到的现网趋势

自批露以来,我们就一直利用 DDo *** on 的统计页面 持续监控Memcache DRDoS在实际现网中的情况。在过去的几个月中,这种类型攻击的频率和单次破坏性都不大,但是自2018-02-24开始,这种情况发生了较大变化。

近期,Memcache DRDoS 的攻击频率上升到了平时的10+倍,从每天小于50件,上升到每天300~400件,直到今天的1484件(实际上,离今天结束还有1个小时),如下图所示。

需要指出,当前 Memcache DRDoS 仍然还不是DDoS的主流。即使在反射类DDoS中,也只占 1% 以下(按攻击事件计),排在 DNS、CLDAP、NTP、SSDP、CharGen、L2TP、BitTorrent、Portmap、SNMP的后面。

我们在现网中对 Memcache DRDoS 攻击方式的测试结果

我们对现网实际环境做了测试,结合分析我们捕获的实际攻击载荷,有以下内容值得关注:

这种反射攻击的放大比率,在理想的测试环境中,可以稳定的测得 1k~60k之间的放大倍数;

在现网实际环境中, 60k 的放大倍数,也是可以稳定的测得的;

上述实测结果,与最初报告者0kee team的估计、 US-CERT安全通告 中的提法,基本是一致的;

此外我们分析了现网实际发生的攻击负载。到目前为止,部分负载的构造是有问题,可能会导致memcache服务崩溃,并不能稳定的打出更大放大倍数。但是这里涉及的技术改进并不困难,攻击者容易做出响应调整。

另外,我们对将放大倍数调整到 60k 以上做了一些初步分析。我们怀疑这个比例是可以继续显著提高的,但具体技术细节不会在这里讨论。

当前已知 Memcache DRDoS 攻击的案例

2月27日,Qrator Labs 在 medium.com 上 批露 了一次DDoS攻击。按照文章的说法,这次攻击确信就是 UDP 11211 端口上的 memcache DRDoS,攻击流量峰值达到 480Gbps。

除了这个案例以外,我们确认有更大的攻击已经实际发生,但并未被公开报道。

当前已知各国运营商、安全社区的应对措施

目前已经有多个相关安全通告,部分列出如下:

通告类:多个主要设备厂商、安全厂商、CERT已经发布通告,例如 CloudFlare 、 Qrator Labs 、 Arbor Networks 、 US-CERT ,等等

预防和防御类:包括 NTT 在内的多个ISP 已经对 UDP 11211 采取限速措施。

应对建议方面,ISP、 *** 管理员、企业用户可以从很多渠道获得应对建议,例如 这里 。我们建议:

各运营商 ISP、云服务厂商,考虑在自己的 *** 内对UDP 11211 采取限速措施

各开发者和 memcache 管理者,考虑自查 memcache 设定ACL

总体而言,一方面,我们开始担忧1Tbps以上的DDoS攻击案例今后会比较频繁的出现,DDoS攻击开始从 G 时代进入 T 时代(Gbps vs Tbps);另一方面,我们必须指出至少在当前 Memcache DRDoS 还不是DDoS 攻击的主流,比例还在 1% 以下(按次数统计)。

来自: netlab

2015 ddos有哪些重大的攻击事件

重大事件这块, *** 上公布数据并不多,公布的就是BBC,和阿里多一些

智能制造安全 | 小米“黑灯”智能工厂的安全防护实践

文 小米集团 陈长林 李泽霖

打造具有国际竞争力的制造业,是我国提升综合国力、保障国家安全、建设世界强国的必由之路。推进以智能制造为核心的智能工厂建设是实现这一目标的重点方向,是我国迈进世界强国大门的关键一环。而信息安全是保障智能工厂系统能够顺利运转的根基。

小米作为一家互联网 科技 制造公司,一直走在创新的前列。在小米十周年的演讲中,创始人雷军对小米的过去十年进行了总结和复盘,也对未来十年提出了三个发展策略:重新创业、互联网 + 制造、行稳致远。在“互联网 + 制造”这条路线上,小米经过过去三年的努力,已经建成了百万台级的全自动化智能工厂(即“黑灯”工厂),致力于超高端手机的自动化生产。对于这条自动化水平极高的生产线,信息安全是其重要根基,是保证整个工厂安全、高效、稳定运转的关键一环。小米把信息安全体系建设作为智能工厂稳健运营的基石,在信息安全管理体系建设与实践上也下足了功夫。

小米智能工厂的信息安全管理体系包括三道防线:

之一道防线——安全技术体系,包括设备层、 *** 层、系统层和应用层。

第二道防线——安全管理体系,包括安全制度与全员安全意识培训。

第三道防线——安全审计,以攻击方蓝军视角对系统进行渗透测试。

之一道防线——安全技术体系

小米智能工厂安全防护体系主要通过应用层、系统层、 *** 层、设备层 4 个层面组成,通过纵深防御体系,更大程度保障小米智能工厂的安全。

一、设备层防护

智能工厂中,不仅有机器人、工业摄像头、AGV 等工业智能设备,同时还会配备监控摄像头、门禁系统、智能储物柜等常规的 IoT 设备。这些设备在生产之初更多考虑的是设备功能的实现以及设备性能的稳定性,而在安全性的设计考量上往往较为匮乏。

近几年来,行业内智能设备被攻击的案例层出不穷。据各大安全厂商的不完全统计,在所受到的DDoS 攻击中,黑客操纵僵尸 *** 从而发起的攻击占总数量的一半以上。而互联网中海量缺乏安全性设计的物联网设备就成为这些攻击的“重灾区”。2017 年,由 Mirai 僵尸程序组成的僵尸 *** 发起的大规模 DDoS 攻击,导致美国、中国、巴西等国家大面积的 *** 瘫痪。而感染的主要设备有监控摄像头、数字视频录像机及路由器等大量物联网设备。

小米拥有全球更大的消费级物联网,对物联网的安全尤为重视,也为此在 2018 年正式成立了 AIoT安全实验室,实验室的组成成员均在 IoT 安全、 *** 安全等方面有着丰富的经验和实践。利用这一优势,小米针对智能工厂中的智能设备进行了全面地安全审计,挖掘设备本身存在的潜在安全隐患,并在之一时间联系相应的厂商进行分析、修复和整改。这一举措将从源头上尽可能地消除设备的安全隐患,缩减可能遭受攻击时的攻击面,在设备层面上做到安全性的提升。

二、 *** 层防护

智能工厂主要由生产网、集成系统网、办公网三大 *** 组成。

生产网中的设备主要有数控机台、机器人、传感器等;集成系统网中的设备主要有 MES、SAP、MOM 等;办公网中的设备主要为工厂员工办公使用的 PC。这三大 *** 分别具有不同的特征属性。

生产网是实际生产线所在的 *** 环境,该 *** 需要具备极高的稳定性和可靠性,一般会划分为多个产线,不同产线承担不同的生产需求。而由于生产网的极高可靠性要求,一些安全变更(如操作系统补丁、安全策略变更、防护变更等)需要一定周期,不能收到更新时立即进行。所以,对生产网的 *** 层防护就变得格外重要。有效的 *** 层防护能够阻挡外部黑客、病毒的攻击,为生产网建立完备的安全屏障。小米在生产网的防护中,采用了单向隔离的安全策略,并对生产网的单向访问策略也做了严格的限制,从 *** 层面上阻断了可能的攻击路径。同时,在生产网内部,也对高危端口(如 TCP135/139/445/1433/3306/5985/5986 等)进行了禁用,避免病毒利用这些高风险端口在生产网中扩散。

集成系统网中拥有大量工业控制应用系统,这些系统与传统的应用系统类似,通常会开放 Web、远程桌面、SSH 等服务。小米搭建了 *** 零信任防护体系,对集成系统网中所有服务都实施了访问控制,仅允许授权用户访问,将非法攻击者拒之门外。对所有集成系统中的服务器,小米通过部署自研的HIDS(主机型入侵检测系统),实时监控服务器的安全状况,并对外部攻击进行阻断和拦截。对于系统本身,小米安全团队会对其产品全流程进行安全把控,在研发、测试、上线阶段进行安全评估,及早地发现问题,提升系统整体安全性。

办公网主要是工厂员工日常办公所使用的 *** 。由于办公网中环境复杂,为了避免对其对核心生产网造成不良影响,办公网与核心生产网完全隔离。而为了保障办公网的安全性,小米在每一名员工的办公 PC 都强制安装了杀毒软件和安全合规检测软件,以保障 PC 的安全性和合规性。为了能够及时发现办公网中的安全隐患和潜在的安全风险,小米在 *** 出口侧部署了威胁检测系统,实时发现存在隐患和威胁的 PC,并采取相应的安全策略进行紧急处理和防护。

三、系统层防护

生产网中有大量的工控上位机,这些工控机来自多家供应商,存在操作系统不统一、安全防护水平参差不齐的问题。而在工控行业,经常会出现一机中毒、全厂遭殃的情况,给整个生产造成严重的影响。

为了解决这些问题所带来的安全风险,小米针对生产网 *** 了标准的操作系统镜像,在操作系统镜像中加入了 IP 安全策略、系统补丁、杀毒软件等安全模块,拉齐系统安全基线。工控电脑终端统一加入工厂专用域,便于管理人员进行集中地安全管理和操作审计。

四、应用层防护

在工业 *** 中,文件传输是常见的一个应用场景。但是,不恰当的文件传输方式极易造成病毒的传播与扩散,对正常生产造成影响。

文件传输的需求主要分为产线内传输、产线间传输和外部交换等。为了满足这一正常业务需求,我们构建了专用文件摆渡服务。

在文件摆渡服务的设计上,主要分为几个部分:文件服务器上部署实施病毒监控服务,保证文件服务器上所有文件的安全性。文件服务器上开启审计策略,对文件交换行为进行记录和审计。向生产网开放 *** B 文件共享接口,并与产线专用域账号打通,用于产线内和产线间的文件传输需求。向办公网开放 Web 文件共享接口,并接入零信任防护系统,用于产线与办公网的文件摆渡。通过统一的文件传输管控,不仅仅解决了业务的使用需求,同时也增强了文件的安全性。

第二道防线——安全管理体系

人员安全意识是安全防护中重要的一环,往往也是安全防护体系中的薄弱环节。近几年,针对企业员工的安全攻击手段层出不穷,从传统的钓鱼邮件、人员渗透到新型的 BadUSB、钓鱼 Wi-Fi 等,都对智能工厂的安全产生巨大的威胁。

小米在员工信息安全意识方面,定期进行钓鱼邮件演练,提升员工对钓鱼邮件的识别能力。定期举办安全意识培训,介绍业内常见的安全攻击和渗透手段,从而提升员工安全意识,降低类似攻击发生的概率。

第三道防线——安全审计

仅从技术层面和人员意识方面进行防护仍然不够,小米蓝军通过模拟真实黑客攻击,对整个安全防护体系进行检验,发现其中的薄弱之处,然后加以修复和整改。

实践是检验真理的唯一标准,在安全防护领域也是如此,一个优秀的安全防护体系必须能够经得起攻击的检验。小米蓝军是一支拥有丰富经验的企业 *** 攻击团队,通过模拟真实黑客的攻击手法,对整个安全防护体系进行攻击模拟,以评判其在应对攻击时的安全表现。

小米蓝军的渗透测试不仅仅需要对安全方案中提到的四大层面进行安全评估,同时也会结合最新的安全攻击技术,对安全方案未覆盖到的风险点进行挖掘,推动整体安全建设。

除了定期的渗透测试外,小米蓝军还拥有实时漏洞监控与扫描平台,7 24 小时不间断对工厂 *** 进行安全扫描,及时发现安全问题,规避安全风险。

展 望

*** 总理在考察制造业企业时指出“中国制造 2025 的核心就是实现制造业智能升级”。未来,小米将会紧跟国家《中国制造 2025》的发展方向,将企业的发展与中国制造业的未来绑在一起。当前,我们已经进入了“5G+AIoT”的时代,消费端产品能力的实现对企业的技术创新能力和保障信息安全的能力提出了更为严苛的要求。所以,如果没有安全这一“夯实基础”,就无法搭建起一直追求高精尖的中国制造业这一“上层建筑”。

在小米十周年演讲中,创始人雷军对“互联网 +制造”方向也提出了更高的要求和目标。在智能工厂的第二阶段,希望建成千万台级别的超高端智能手机生产线,该工厂将实现极高的自动化,同时也会具备更为严苛的安全标准以保障生产线的高效运转。未来,小米将会继续深耕智能制造业,努力推动中国制造走在更为安全、先进、稳健的前进道路上,为实现“中国制造 2025”这一伟大的十年计划做出应有的贡献。

(本文刊登于《中国信息安全》杂志2021年第1期)

那些年,DDoS的那些反击渗透的事情。

DDoS攻击与对策

DDo(Distributed Denial of Service),即分布式拒绝服务攻击,是指黑客通过控制由多个肉鸡或服务器组成的僵尸 *** ,向目标发送大量看似合法的请求,从而占用大量 *** 资源使 *** 瘫痪,阻止用户对 *** 资源的正常访问。

从各安全厂商的DDoS分析报告不难看出,DDoS攻击的规模及趋势正在成倍增长。由于攻击的成本不断降低,技术门槛要求越来越低,攻击工具的肆意传播,互联网上随处可见成群的肉鸡,使发动一起DDoS攻击变得轻而易举。

DDoS攻击技术包括:常见的流量直接攻击(如SYN/ACK/ICMP/UDP FLOOD),利用特定应用或协议进行反射型的流量攻击(如,NTP/DNS/SSDP反射攻击,2018年2月28日GitHub所遭受的Memcached反射攻击),基于应用的CC、慢速HTTP等。关于这些攻击技术的原理及利用工具网上有大量的资源,不再赘述。

1.1 DDoS防御常规套路

防御DDoS的常规套路包括:本地设备清洗,运营商清洗,云清洗。

1.本地设备清洗

抗DDoS设备(业内习惯称ADS设备)一般以盒子的形式部署在 *** 出口处,可串联也可旁路部署。旁路部署需要在发生攻击时进行流量牵引,其基本部署方案如图18-1所示。

图18-1 ADS 设备部署方式

图18-1中的检测设备对镜像过来的流量进行分析,检测到DDoS攻击后通知清洗设备,清洗设备通过BGP或OSPF协议将发往被攻击目标主机的流量牵引到清洗设备,然后将清洗后的干净流量通过策略路由或者MPLS LSP等方式回注到 *** 中;当检测设备检测到DDoS攻击停止后,会通知清洗设备停止流量牵引。

将ADS设备部署在本地,企业用户可依靠设备内置的一些防御算法和模型有效抵挡一些小规模的常见流量攻击,同时结合盒子提供的可定制化策略和服务,方便有一定经验的企业用户对攻击报文进行分析,定制针对性的防御策略。目前国内市场上,主要以绿盟的黑洞为代表,具体可以访问其官网进一步了解。

本地清洗更大的问题是当DDoS攻击流量超出企业出口带宽时,即使ADS设备处理性能够,也无法解决这个问题。一般金融证券等企业用户的出口带宽可能在几百兆到几G,如果遇到十G以上甚至上百G的流量,就真的麻烦了,更别谈T级别的DDoS攻击了。

 2.运营商清洗

当本地设备清洗解决不了流量超过出口带宽的问题时,往往需要借助运营商的能力了,紧急扩容或者开启清洗服务是一般做法,前提是要采购相应的清洗服务,而且一般需要通过 *** 或邮件确认,有的可能还要求传真。

运营商的清洗服务基本是根据netflow抽样检测 *** 是否存在DDoS攻击,而且策略的颗粒度较粗,因此针对低流量特征的DDoS攻击类型检测效果往往不够理想。再加上一些流程上的操作如 *** 、邮件、传真等,真正攻击到来时处理可能会更慢,需要重点关注。

值得一提的是中国电信的云堤服务,提供了“流量压制”和“近源清洗”服务,而且还提供了自助平台供用户操作,查看流量、开启清洗也非常方便。

 3.云清洗

内容分发 *** (Content Delivery Network,CDN)是指,通过在 *** 各处放置节点服务器,让用户能够在离自己最近的地方访问服务,以此来提高访问速度和服务质量。CDN主要利用了四大关键技术:内容路由,内容分发,内存存储,内容管理。更详细的技术原理可以参考中国电信研究院出版的《CDN技术详解》。

CDN技术的初衷是为了提高互联网用户对静态网站的访问速度,但是由于分布式、就近访问的特点,能对攻击流量进行稀释,因此,一些传统CDN厂商除了提供云加速功能外,也开始推出云清洗的服务,当然还有一些安全公司基于其自身优势进入云清洗市场。基本原理都一样,需要先在云端配置好相应的记录,当企业遭受大规模攻击时,通过修改其DNS记录将要保护的域名CNAME到云端事先配好的记录上,等待DNS生效即可。

使用云清洗需要注意以下几个问题:

1. -·云清洗厂商需要提前配置好相应记录。 ·DNS修改记录后,需要等待TTL超时才生效。 

2.  ·直接针对源IP的攻击,无法使用云清洗防护,还要依靠本地和运营商清冼。 

3. ·针对HTTPS网站的防御,还涉及HTTPS证书,由此带来的数据安全风险需要考虑,市面上也有相应的Keyless方案{n1}。

由于国内环境不支持Anycast技术,所以不再赘述,如果有海外分支机构的网站需要防护,可以关注。

{nt1|其细节可以参考cloudflare公司博客上的文章,链接:[]()。

一些经验

结合笔者的一些经验,对DDoS防护落地做一些补充,仅供参考。

1.自动化平台

金融企业由于高可用要求,往往会有多个数据中心,一个数据中心还会接入多家运营商线路,通过广域网负载均衡系统对用户的访问进行调度,使之访问到最近更优的资源。当任何一条接入线路存在DDoS攻击时,能通过广域网负载均衡系统将该线路上的访问需求转移至其他互联网线路。在针对IP地址开展的DDoS攻击中,此方案能够有效保障正常客户的访问不受影响,为了实现快速切换,需要通过自动化运维平台来实现,如图18-2所示。

图18-2

线路调整一键应急配合必要的应知应会学习和应急演练,使团队成员都能快速掌握 *** ,在事件发生之一时间进行切换,将影响降到最小。接下来才是通知运营商进行清洗处理,等待流量恢复正常后再进行回切。

当某一个业务的IP受到攻击时,可以针对性地处置,比如一键停用,让正常用户访问其他IP;也可以一键开启清洗服务。

 2.设备抗D能力

除了ADS设备外,还有一些设备也需要关注抗DDoS能力,包括防火墙、负载均衡设备等。

出于安全可控需求,金融企业往往会采用异构模式部署防火墙,比如最外层用产品A,里面可能会用产品B。假如产品A的抗DDoS能力差,在发生攻击时,可能还没等到ADS设备清洗,产品A已经出问题了,比如发生了HA切换或者无法再处理新的连接等。

在产品选型测试时,需要关注这方面的能力,结合笔者所在团队经验,有以下几点供参考:

1. ·某些产品在开启日志记录模块后会存在极严重的性能消耗,在可能存在攻击的环境内建议关闭。

2. ·尽管理论和实际会有偏差,但根据实际测试情况,还是建议当存在大量TCP、UDP新建连接时,防火墙的更大连接数越大越好

3. 多测试多对比,从对比中可以发现更优的方案,通过适当的调整优化引入更优方案。

4. ·监控防火墙CPU和连接数,当超过一定值时开始着手优化规则,将访问量多的规则前移、减少规则数目等都是手段。

负载均衡设备也需要关注以上问题,此外,负载均衡由于承接了应用访问请求分发调度,可以一定程度上针对性地防护基于IP速率、基于URL速率的DDoS攻击以及慢速攻击等。图18-3所示为F5的A *** 的DDoS防护策略。

图18-3

负载均衡设备A *** 防DDoS功能

请求经过防火墙和负载均衡,最后到了目标机器上处理的时候,也需要关注。系统的性能调优设置、Nginx的性能参数调整以及限制连接模块配置等,都是在实际工作中会涉及的。

3.应急演练

部署好产品,开发好自动化运维平台,还要配合必要的应知应会、应急演练才行。因为金融行业的特殊性,DDoS攻击发生的次数相比互联网行业还是少很多的,有的企业可能几年也碰不到一次。时间久了技能就生疏了,真正需要用到时,可能连登录设备的账号口令都忘了,又或者需要现场接线的连设备都找不到,那就太糟糕了。

此外,采购的外围的监控服务、运营商和云清洗产品的服务能力也需要通过演练来检验有效性。签订合同时承诺的秒级发现、分钟级响应是否经得起考验,要先在心里打上一个问号。建议在不事先通知的情况下进行演练,观察这中间的问题并做好记录,待演练完成后一并提交给服务商要求整改。这样的演练每年要不定期组织几次。

发起2017年更大规模的DDoS *** 攻击病毒木马的名字是?

可以安装一些杀毒软件在电脑上

如电脑管家一类的,然后一直保持开启

这样就可以预防病毒进入到电脑当中了

阿里云服务器被攻击-

根据全球 游戏 和全球移动互联网行业第三方分析机构Newzoo的数据显示:2017年上半年,中国以275亿美元的 游戏 市场收入超过美国和日本,成为全球榜首。

游戏 行业的快速发展、高额的攻击利润、日趋激烈的行业竞争,让中国 游戏 行业的进军者们,每天都面临业务和安全的双重挑战。

游戏 行业一直是竞争、攻击最为复杂的一个江湖。 曾经多少充满 *** 的创业团队、玩法极具特色的 游戏 产品,被互联网攻击的问题扼杀在摇篮里;又有多少运营出色的 游戏 产品,因为遭受DDoS攻击,而一蹶不振。

DDoS 攻击的危害

小蚁安盾安全发布的2017年上半年的 游戏 行业DDoS攻击态势报告中指出:2017年1月至2017年6月, 游戏 行业大于300G以上的攻击超过1800次,攻击更大峰值为608G; 游戏 公司每月平均被攻击次数高达800余次。

目前, 游戏 行业因DDoS攻击引发的危害主要集中在以下几点:

• 90%的 游戏 业务在被攻击后的2-3天内会彻底下线。

• 攻击超过2-3天以上,玩家数量一般会从几万人下降至几百人。

• 遭受DDoS攻击后, 游戏 公司日损失可达数百万元。

为什么 游戏 行业是 DDoS 攻击的重灾区?

据统计表明,超过50%的DDoS和CC攻击,都在针对 游戏 行业。 游戏 行业成为攻击的重灾区,主要有以下几点原因:

• 游戏 行业的攻击成本低,几乎是防护成本的1/N,攻防两端极度不平衡。 随着攻击方的手法日趋复杂、攻击点的日趋增多,静态防护策略已无法达到较好的效果,从而加剧了这种不平衡。

• 游戏 行业生命周期短。 一款 游戏 从出生到消亡,大多只有半年的时间,如果抗不过一次大的攻击,很可能就死在半路上。黑客也是瞄中了这一点,认定只要发起攻击, 游戏 公司一定会给保护费。

• 游戏 行业对连续性的要求很高,需要7 24小时在线。 因此如果受到DDoS攻击,很容易会造成大量的玩家流失。在被攻击的2-3天后,玩家数量从几万人掉到几百人的事例屡见不鲜。

• 游戏 公司之间的恶性竞争,也加剧了针对行业的DDoS攻击。

游戏 行业的 DDoS 攻击类型

• 空连接 攻击者与服务器频繁建立TCP连接,占用服务端的连接资源,有的会断开、有的则一直保持。空连接攻击就好比您开了一家饭馆,黑帮势力总是去排队,但是并不消费,而此时正常的客人也会无法进去消费。

• 流量型攻击 攻击者采用UDP报文攻击服务器的 游戏 端口,影响正常玩家的速度。用饭馆的例子,即流量型攻击相当于黑帮势力直接把饭馆的门给堵了。

• CC攻击 攻击者攻击服务器的认证页面、登录页面、 游戏 论坛等。还是用饭馆的例子,CC攻击相当于,坏人霸占收银台结账、霸占服务员点菜,导致正常的客人无法享受到服务。

• 假人攻击 模拟 游戏 登录和创建角色过程,造成服务器人满为患,影响正常玩家。

• 对玩家的DDoS攻击 针对对战类 游戏 ,攻击对方玩家的 *** 使其 游戏 掉线或者速度慢。

• 对网关DDoS攻击 攻击 游戏 服务器的网关,导致 游戏 运行缓慢。

• 连接攻击 频繁的攻击服务器,发送垃圾报文,造成服务器忙于解码垃圾数据。

游戏 安全痛点

• 业务投入大,生命周期短 一旦出现若干天的业务中断,将直接导致前期的投入化为乌有。

• 缺少为安全而准备的资源 游戏 行业玩家多、数据库和带宽消耗大、基础设施资源准备时间长,而安全需求往往没有被 游戏 公司优先考虑。

• 可被攻击的薄弱点多 网关、带宽、数据库、计费系统都可能成为 游戏 行业攻击的突破口,相关的存储系统、域名DNS系统、CDN系统等也会遭受攻击。

• 涉及的协议种类多 难以使用同一套防御模型去识别攻击并加以防护,许多 游戏 服务器多用加密私有协议,难以用通用的挑战机制进行验证。

• 实时性要求高,需要7 24小时在线 业务不能中断,成为DDoS攻击容易奏效的理由。

• 行业恶性竞争现象猖獗 DDoS攻击成为打倒竞争对手的工具。

如何判断已遭受 DDoS 攻击?

假定已排除线路和硬件故障的情况下,突然发现连接服务器困难、正在 游戏 的用户掉线等现象,则说明您很有可能是遭受了DDoS攻击。

目前, 游戏 行业的IT基础设施一般有 2 种部署模式:一种是采用云计算或者托管IDC模式,另外一种是自行部署 *** 专线。无论是前者还是后者接入,正常情况下, 游戏 用户都可以自由流畅地进入服务器并进行 游戏 娱乐 。因此,如果突然出现以下几种现象,可以基本判断是被攻击状态:

• 主机的IN/OUT流量较平时有显著的增长。

• 主机的CPU或者内存利用率出现无预期的暴涨。

• 通过查看当前主机的连接状态,发现有很多半开连接;或者是很多外部IP地址,都与本机的服务端口建立几十个以上的ESTABLISHED状态的连接,则说明遭到了TCP多连接攻击。

• 游戏 客户端连接 游戏 服务器失败或者登录过程非常缓慢。

• 正在进行 游戏 的用户突然无法操作、或者非常缓慢、或者总是断线。

DDoS 攻击缓解更佳实践

目前,有效缓解DDoS攻击的 *** 可分为 3 大类:

• 架构优化

• 服务器加固

• 商用的DDoS防护服务

您可根据自己的预算和遭受攻击的严重程度,来决定采用哪些安全措施。

架构优化

在预算有限的情况下,建议您优先从自身架构的优化和服务器加固上下功夫,减缓DDoS攻击造成的影响。

部署 DNS 智能解析

通过智能解析的方式优化DNS解析,有效避免DNS流量攻击产生的风险。同时,建议您托管多家DNS服务商。

• 屏蔽未经请求发送的DNS响应信息 典型的DNS交换信息是由请求信息组成的。DNS解析器会将用户的请求信息发送至DNS服务器中,在DNS服务器对查询请求进行处理之后,服务器会将响应信息返回给DNS解析器。

但值得注意的是,响应信息是不会主动发送的。服务器在没有接收到查询请求之前,就已经生成了对应的响应信息,这些回应就应被丢弃。

• 丢弃快速重传数据包 即便是在数据包丢失的情况下,任何合法的DNS客户端都不会在较短的时间间隔内向同一DNS服务器发送相同的DNS查询请求。如果从相同IP地址发送至同一目标地址的相同查询请求发送频率过高,这些请求数据包可被丢弃。

• 启用TTL 如果DNS服务器已经将响应信息成功发送了,应该禁止服务器在较短的时间间隔内对相同的查询请求信息进行响应。

对于一个合法的DNS客户端,如果已经接收到了响应信息,就不会再次发送相同的查询请求。每一个响应信息都应进行缓存处理直到TTL过期。当DNS服务器遭遇大量查询请求时,可以屏蔽掉不需要的数据包。

• 丢弃未知来源的DNS查询请求和响应数据 通常情况下,攻击者会利用脚本对目标进行分布式拒绝服务攻击(DDoS攻击),而且这些脚本通常是有漏洞的。因此,在服务器中部署简单的匿名检测机制,在某种程度上可以限制传入服务器的数据包数量。

• 丢弃未经请求或突发的DNS请求 这类请求信息很可能是由伪造的 *** 服务器所发送的,或是由于客户端配置错误或者是攻击流量。无论是哪一种情况,都应该直接丢弃这类数据包。

非泛洪攻击 (non-flood) 时段,可以创建一个白名单,添加允许服务器处理的合法请求信息。白名单可以屏蔽掉非法的查询请求信息以及此前从未见过的数据包。

这种 *** 能够有效地保护服务器不受泛洪攻击的威胁,也能保证合法的域名服务器只对合法的DNS查询请求进行处理和响应。

• 启动DNS客户端验证 伪造是DNS攻击中常用的一种技术。如果设备可以启动客户端验证信任状,便可以用于从伪造泛洪数据中筛选出非泛洪数据包。

• 对响应信息进行缓存处理 如果某一查询请求对应的响应信息已经存在于服务器的DNS缓存之中,缓存可以直接对请求进行处理。这样可以有效地防止服务器因过载而发生宕机。

• 使用ACL的权限 很多请求中包含了服务器不具有或不支持的信息,可以进行简单的阻断设置。例如,外部IP地址请求区域转换或碎片化数据包,直接将这类请求数据包丢弃。

• 利用ACL,BCP38及IP信誉功能 托管DNS服务器的任何企业都有用户轨迹的限制,当攻击数据包被伪造,伪造请求来自世界各地的源地址。设置一个简单的过滤器可阻断不需要的地理位置的IP地址请求或只允许在地理位置白名单内的IP请求。

同时,也存在某些伪造的数据包可能来自与内部 *** 地址的情况,可以利用BCP38通过硬件过滤清除异常来源地址的请求。

部署负载均衡

通过部署负载均衡(SLB)服务器有效减缓CC攻击的影响。通过在SLB后端负载多台服务器的方式,对DDoS攻击中的CC攻击进行防护。

部署负载均衡方案后,不仅具有CC攻击防护的作用,也能将访问用户均衡分配到各个服务器上,减少单台服务器的负担,加快访问速度。

使用专有 ***

通过 *** 内部逻辑隔离,防止来自内网肉鸡的攻击。

提供余量带宽

通过服务器性能测试,评估正常业务环境下能承受的带宽和请求数,确保流量通道不止是日常的量,有一定的带宽余量可以有利于处理大规模攻击。

服务器安全加固

在服务器上进行安全加固,减少可被攻击的点,增大攻击方的攻击成本:

• 确保服务器的系统文件是最新的版本,并及时更新系统补丁。

• 对所有服务器主机进行检查,清楚访问者的来源。

• 过滤不必要的服务和端口。例如,WWW服务器,只开放80端口,将其他所有端口关闭,或在防火墙上做阻止策略。

• 限制同时打开的SYN半连接数目,缩短SYN半连接的timeout时间,限制SYN/ICMP流量。

• 仔细检查 *** 设备和服务器系统的日志。一旦出现漏洞或是时间变更,则说明服务器可能遭到了攻击。

• 限制在防火墙外与 *** 文件共享。降低黑客截取系统文件的机会,若黑客以特洛伊木马替换它,文件传输功能无疑会陷入瘫痪。

• 充分利用 *** 设备保护 *** 资源。在配置路由器时应考虑以下策略的配置:流控、包过滤、半连接超时、垃圾包丢弃,来源伪造的数据包丢弃,SYN 阀值,禁用ICMP和UDP广播。

• 通过iptable之类的软件防火墙限制疑似恶意IP的TCP新建连接,限制疑似恶意IP的连接、传输速率。

• 识别 游戏 特征,自动将不符合 游戏 特征的连接断开。

• 防止空连接和假人攻击,将空连接的IP地址直接加入黑名单。

• 配置学习机制,保护 游戏 在线玩家不掉线。例如,通过服务器搜集正常玩家的信息,当面对攻击时,将正常玩家导入预先准备的服务器,并暂时放弃新进玩家的接入,以保障在线玩家的 游戏 体验。

商用 DDoS 攻击解决方案

针对超大流量的攻击或者复杂的 游戏 CC攻击,可以考虑采用专业的DDoS解决方案。目前,通用的 游戏 行业安全解决方案做法是在IDC机房前端部署防火墙或者流量清洗的一些设备,或者采用大带宽的高防机房来清洗攻击。

当宽带资源充足时,此技术模式的确是防御 游戏 行业DDoS攻击的有效方式。不过带宽资源有时也会成为瓶颈:例如单点的IDC很容易被打满,对 游戏 公司本身的成本要求也比较高。

DDoS攻击解决方案——高防IP

新式高防技术,替身式防御,具备4Tbps高抗D+流量清洗功能,无视DDoS,CC攻击,不用迁移数据,隐藏源服务器IP,只需将网站解析记录修改为小蚁DDoS高防IP,将攻击引流至小蚁集群替身高防服务器,是攻击的IP过滤清洗拦截攻击源,正常访问的到源服务器,保证网站快速访问或服务器稳定可用,接入半小时后,即可正式享受高防服务。

0条大神的评论

发表评论